# **APSE: Cemeteries and Crematoria Seminar**



# Do Natural Burials Contribute to Ecosystem Services?

**Dr Mark Pawlett** 

21st November 2024

www.cranfield.ac.uk





- Chartered Environmental Scientist (CEnv) with IES
- 23 years soil biology research experience



 Interested in cadaver soil decomposition processes in the context of natural burials and for forensic investigations

• Email: m.pawlett@cranfield.ac.uk

Cranfield: <a href="https://www.cranfield.ac.uk/people/dr-mark-pawlett-788115">https://www.cranfield.ac.uk/people/dr-mark-pawlett-788115</a>

 Reference: Pawlett M et al. (2024) The contribution of natural burials to soil ecosystem services: review and emergent research questions, Applied Soil Ecology, 194 (February) Article No. 105200. Open Access



- What is Natural Burial
- Cadaver decomposition in soil
- What are "ecosystem services".
- Aboveground: Biodiversity and habitat creation
- Belowground:
  - Soil Nutrient cycling
  - Key factors that affect cadaver decomposition in soil
- Risks
- Knowledge Gaps and Conclusions



## What is Natural Burial

- Various names: Green Burial, Woodland Burial, Conservation Burial
- Interment of the deceased in the ground with the intention of recycling the body back to nature
- Identity of sustainability
  - Potentially toxic chemicals removed:
    - No formaldehyde, metals, coffin fittings, varnishes, wood preservatives, grave markers
  - Materials sustainably sourced:
    - linen shroud, wool, wicker coffin, cardboard,
    - coffin liners (replace plastic with other materials: shellfish waste: (<u>Dutkiewicz, 2002</u>)
  - Burial space is running out: Natural burial may reduce pressure



# **Natural Burial Legislation**

- Legislation (England and Wales):
  - Burial not be within 250m of a spring or well used for drinking water;
     50m for other springs and boreholes
  - No standing water in the grave when 1<sup>st</sup> dug
  - Grave depth should be 0.92 cm (3 ft) unless soil is of "suitable character" where the soil can be 0.61 cm (2ft).







## **Cadaver Decomposition in Soil**

-6 stages described by Payne 1965



Stage 1: Fresh: autolysis, aerobic 12h



**Stage 2: Bloat** (gases): putrefaction, anaerobic decomposition 72h



Stage 3: Active decay: <u>Cadaver Decomposition</u> <u>Islands</u> (Carter and Tibbett 2008)



**Stage 4: Advanced decay:** putrefaction almost complete



Stage 5: Dry/skeletonised



**Stage 6: Remains:** 

20-200 days depending on local soil conditions (Benninger et al., 2008).

Carbon sequestration?





## Above-ground: Biodiversity and habitat creation

- Reduced cemetery management:
  - Cemetery managed for biodiversity
  - reduced pesticides and fertilisers
  - less frequent mowing
- Habitat Creation:
  - Use of biodiverse **seed mixes** e.g. for species rich meadow
  - selective coppicing in woodland burial sites:
    - provide fuel
    - enhancing <u>carbon sequestration</u> potential
- RISK?: Invasive species: bereaved families may request the planting of non-native trees and plants with the risk of potential harm to the native ecology if species become invasive.



million/year by 2099 (<u>United Nations, 2022</u>)= 1.95 million tonnes C per year.

Elgvated nutrients in soil: (Cobaugh et al., 2015; (Żychowski, 2021; (Holden and McDonald-Madden, 2018)):



# **Key Soil Factors Affecting Cadaver Decomposition**

- Temperature: affects biological activity, burial reduces temperature
- Texture:
  - Clays
    - greater nutrient retention in the soil
    - Reduce leaching
    - may reduce decomposition
  - Sandy soils
    - greater gaseous diffusivity and permeability: hence faster decomposition
- Moisture
  - Water logging: slows down decomposition e.g. peat bogs
  - Desiccation: mummification
- Organic matter in soils can increase decomposition <u>Tumer et al.</u>
   (2013)
- Burial depth: Reduced to increase connectivity with surface ecology



#### Risk to GHG emissions

#### Anaerobic: reduced oxygen

- Sealed graves quickly become anoxic: reduced decomposition.
- Natural burial: materials (e.g. wicker coffin) promote gas exchange and prevent anoxic conditions thus speeding up decomposition

#### Risk:

- Waterlogging (hypoxic conditions)
  - Anaerobic decomposition: methane (CH<sub>4</sub>) (<u>Santarsiero et al.</u>, 2000).
  - promotes denitrification and thereby potential N<sub>2</sub>O pollution (GHG)

#### Solution?

- Increase oxygen to reduce CH<sub>4</sub>
- Sandy soils less likely to become anoxic (but groundwater risk?)



#### **Risks to Groundwater**

- Increased decomposition rates may be a source of diffuse pollutions: especially N (Kim et al., 2008)
- Fears of groundwater contamination are the most common cause for rejection at the planning stage (Yarwood et al., 2015).
- Microbial pathogens:
  - Do human athogens survive and enter groundwater (faecal coliforms, Low, li, viruses)
    case studies s. on pathogens from livestock entering groundwater (Kw. op., al., 2017).
- Medical interventions and pitch, accurring and pitch, accumulate in soils, such as Hyon, Au from teeth fillings (Fiedler et al., 2012).



- Scavenging animals may be problematic for shallow burial?
- Coffin collapse/subsidence: in the absence of the supporting coffin?
- Society acceptance: largely unknown but is common practice for some groups.





- Are current regulations sufficient:
  - Regulations in UK do not consider the underlying parent materials and soil type.
- What are the comparative GHG and carbon sequestration implications of the funeral industry?
  - There is no comprehensive LCA to understand the consequences of different approaches and limited available data to undertake such an assessment.
- Groundwater contamination: e.g., pathogens, pharmaceuticals



# **Knowledge Gaps**

- Is there a **preferred ecosystem type** to mitigate risks and enhance benefits to sustainable management practice in cemeteries?
  - Woodland Vs grasslands (pasture, species rich meadow)
- Interactions with the soil microbiome:
  - little is known regarding the interactions of the decaying cadaver with the soil microbiome
  - Localised nutrient and biological hotspots may affect the wider ecosystem and influence pedogenesis



#### Grave design:

- Engineered to promote oxygen and thereby reduce methane (GHG)
- Control of leachable materials
- Would it be environmentally better to release products of decomposition slowly thus preventing a "flush" of nutrients to the environment.
- Speeding up decomposition may alleviate pressure for land space suitable for cemeteries
- Can Natural Burial improve soil health and restore degraded soils?
- Hybrid management (integration into other land management practice):
  - Integrating natural burial into traditional cemetery
  - rewilding
  - green corridors (Scalenghe and Pantani 2020)



#### Conclusions

- Natural Burial may provide sustainable solutions to the funeral industry.
- Potential benefits include increased biodiversity and carbon sequestration
- Potential Risks include GHG emissions and groundwater contamination.
- Knowledge gaps identified need to be answered for future sustainable burial practice.



# www.cranfield.ac.uk

T: +44 (0)1234 750111





f /cranfielduni